Se connecter
Se connecter

ou
Créer un compte

ou

Acoustique régie studio

  • 6 réponses
  • 4 participants
  • 867 vues
  • 5 followers
Sujet de la discussion Acoustique régie studio
bonjour à tous

Je me rend compte que ce n'est pas évident sans connaitre le lieu, mais j'aimerais avoir votre avis sur le traitement acoustique à apporter à ma régie, j'ai essayé pas mal de choses, déplacer Les monitor, bass trap etc....mais sans grand résulta, j'ai toujours des trous un peut partout dans la pièce (comme le 100HZ par exemple en plein milieu!) ma régie est carrée et je sais que c'est la pire des config mais je n'ai pas le choix :(.
Si quelqu'un à une idée je suis preneur.
voila deux photos de la régie elle mesure 3,50 sur 3,70 et 2,20 de hauteur.

merci.

traitement-isolation-acoustique-2415886.jpg
traitement-isolation-acoustique-2415887.jpg
2
Peut-être essayer de casser tes angles et ton cube au niveau du plafond ?
3
merci pour ta réponse, oui pour les angles je pense faire des bass trap plus conséquent en laine de roche, les mousse que j'ai mis ne serve strictement à rien. le rectangle au plafond c'est un bass trap avec de la laine de roche de 50mm.
4
Citation de tcc :
merci pour ta réponse, oui pour les angles je pense faire des bass trap plus conséquent en laine de roche, les mousse que j'ai mis ne serve strictement à rien. le rectangle au plafond c'est un bass trap avec de la laine de roche de 50mm.

Bonjour,

50 mm c'est bon à partir de 1200-1500 Hz, loin du grave.
une règle simple à mémorisée par toute personne qui souhaite jeter au hasard de la mouse, laine ou fibre dans sa pièce : l'épaisseur de l'absorbant laine de roche ou fibre de verre (préférer la fibre sur les grandes épaisseur) doit être égale au 1/4 de la longueur d'onde la fréquence la plus basse visée soit pour 100 Hz 344/100/4 =0,86 mètre ou 860 mm.

Pour ce qui est de la surface, bien heureux celui qui le sait donc as much as possible mais pas n'importe où.

Ensuite un bass trap au plafond pour quoi faire alors que les modes axiaux sont plus audibles que les modes tangentiels qui sont plus audibles que les modes obliques.

http://www.audiosonica.com/fr/cours/post/185/Principes_d_acoustique-Modes_de_resonance



Un simulateur pour savoir quel type de laine ou de fibre mettre en fonction de l'épaisseur

http://www.acousticmodelling.com



Considération générales :

en anglais

https://www.gearslutz.com/board/studio-building-acoustics/584207-sbir.html


ome general considerations regarding control room treatment and placement of diffusers:


First of all, “RTxx” (RT60/45/30 etc; Reverberation Time) does not exist in small acoustic spaces (“SAS”). “Decay time” might be a valid term sometimes but in general, all we are really interested in is the shape of the ETC (and perhaps the slope of the linear fit (after sparse reflections) of the Schroeder integral, in order to evaluate the “decay times” at higher frequency bands.

Since all design concepts share the same (more or less) criteria’s for the lower frequency range (below about Schroeder); = good modal control and as low decay time as the rest of the frequency range (or preferably even lower) and naturally; an as even frequency response as possible; we´ll focus the rest of this discussion on the range above the modal range from now on since this is where the various design philosophies differ.

In order to advise on placement of acoustic treatment and diffusers in particular, one first needs to decide what acoustic response (speaker-listener response primarily, but environment response might also be important) we are trying to accomplish in the room. Assuming a studio control room; the more common options are: LEDE/RFZ (or possibly CID), NE (or any of the variants of it) or perhaps “Ambechoic” if surround formats are important (or at least something similar to it; like a LEDE/RFZ but no termination of the “ISD-gap” but still featuring a “decay time” of about 0,3 seconds by a highly diffused sound fled).

If hi-fi listening room (not critical listening), there are no rights or wrongs, but I would still personally try to at least avoid early strong reflections and try to create some kind of diffuse return to the listening position in order to keep some life in the room instead of ending up with a “dead” sounding space (unless this is what is requested naturally). The criteria’s of LEDE/RFZ would be my first choice, or perhaps something in-between LEDE/RFZ and Ambechoic (a proper termination, no termination, or limited termination of the ISD-gap assuming highly diffuse decaying sound field). Also, since we´re talking about placement of diffusers, NE design is probably not of much interest, especially for normal listening rooms since this approach tries to achieve an anechoic speaker-room response although one can use diffusers even if NE in order to keep the general room response somewhat alive (but without scattering too much speaker energy to the sweet spot thus deteriorating the anechoic speaker-listener response).

Assuming we strive for a LEDE/RFZ (or possibly CID) response, we first need to select an ISD-gap and this is either done by simply measuring the room and identifying the first order reflection from the rear wall, or calculating the time difference between the direct sound and the reflection from the rear wall based on the geometry, and then deciding if this is an appropriate ISD-gap (between about 12-25 ms). If the control room is connected to a large recording room, the live room usually dictates the ISD-gap needed in the control room. Preferably, the ISD-gap in the control room needs to be at least about 3-5 ms longer than the recording rooms generic ISD-gap). If the distance to the rear wall in the control room is too short to provide a sufficient ISD-gap, treatment and/or geometry can be used to extend the natural ISD-gap of the room (by using absorption and/or splayed walls on the first reflection point on the rear wall and using rotated 1D diffusers on side walls for instance).

If a less strict treatment is requested, then at least try to avoid placing diffusing elements in such a way that they scatter early energy back to the listening position within about 10-12 ms or earlier compared to the direct sound. I would personally try to extend this period to at least about 15-17 ms, 20-25 ms if possible (a longer ISD-gap allows you to hear the acoustical footprint of the recording easier, especially of larger recording rooms). Use geometry and/or absorption to redirect/absorb early energy (away) from the listening position that would otherwise arrive too soon (within the desired ISD-gap).

If absorption is used, make sure to use thick panels so that you don´t simply “EQ” the reflections, only removing the high midrange and highs from it, leaving the low mids and bass frequency range unaffected. Use at least 120 mm, preferably 200-300 mm or deeper (and make sure to use a wool with appropriate flow resistivity for the given depth). Only use broadband absorption where needed, or you´ll struggle to keep the energy needed to keep the room “alive” (in order to reach the desired gain of the ISD-gap termination).

Use the ETC to track down your early reflections and figure out what areas needs attention. Also, remember that diffusers also absorb energy more or less. One cannot “add” energy to a room by adding diffusers unless replacing treatment that absorbs more than the diffuser replacing it. Just adding diffusers to a room does not automatically make it sound “more spacious”, it´s the combination of all treatment in a well thought out design that achieves this.

The energy return (the termination of the ISD-gap) should arrive primarily from the rear sides in a LEDE/RFZ/CID room and this is the reason why you normally see 1D diffusers on the rear wall in such rooms. As stated above, if your room is too short to provide a sufficient ISD-gap using the rear wall, one can extend this gap by various treatment options but assuming the room is not too short (or too long); the rear wall is the most efficient place to put 1D diffusers, since they will scatter the sound to the sides and then back to the listener via the rear side walls.

Assuming one understands that diffusers also absorbs energy (more or less) and that we are now probably striving away from LEDE/RFZ and moving towards the Ambechoic response; one can add diffusers to other surfaces as well as long as they don’t (partially) scatter energy back to the sweet spot within the ISD-gap (with or without termination).

A note on low frequency treatment (modes and SBIR related issues): I recommend pressure based absorbers for the bass region for two reasons: First, they don´t need to be ridiculously deep in order to be effective at low frequencies and secondly, they don´t absorb the upper range that one usually struggle to preserve in order to achieve a proper termination of the ISD-gap and the semi diffuse field that should follow it (assuming LEDE/RFZ/CID design or Ambechoic with decent “decay times”).

For proper use of any acoustic treatment; measure and analyse your room and decide on a response model to use as a guide when deciding on different treatment options. I know this might sound daunting, but the alternative is usually a less than perfect outcome but if you´re happy with that: build/buy some panels and fire away!


More on topic here:
https://www.gearslutz.com/board/studi...alculator.html
https://www.gearslutz.com/board/studi...-help-pls.html
https://www.gearslutz.com/board/studi...design-ok.html
https://www.gearslutz.com/board/studi...ml#post7679598


ISD

the Inter Signal Delay (ISD) gap is a length in time after the original signal reaches the listening position that is essentially anechoic (no reflections or specular energy is allowed to arrive within this window in time) - you are ONLY hearing the direct signal from the speakers and no other reflections from any boundaries within the room.

if you were in an anechoic room, your ISD gap would be infinity, as you'll never get a reflection off a boundary (as all reflections are fully attenuated - just as if you were outdoors or in an infinitely large room).

in small rooms where the boundaries are relatively close, reflections off the sidewalls and ceiling will take a slightly longer path than the direct signal, which means these reflections will arrive slightly longer in time and combine with the original signal at the listening position.

if a specular reflection arrives within the ISD gap, then it is considered to be an 'early' reflection. but it is important to note that not all first-order-reflections are early-reflections. in a large room, the reflection path is so great that the reflection arrives at the listening position outside of this gap - hence it is not necessary an 'early reflection'.

for example - a 20ms ISD means that once the original (direct) signal from the speaker reaches the listening position (straight line, hence the shortest path), there is a 20ms anechoic gap where no other specular energy impedes the listening position. this allows the brain to 'digest' the original signal in totality before also hearing the reflections within the room.

any early-reflections arriving at the listening position within 15ms or so of the original signal will cause time-smearing and issues related to clarity. any early reflections arriving in this window need to be identified and attenuated (either by redirection, absorption, etc)...if that is indeed the room model you are emulating and the specular response you are looking to achieve.

by attenuating these early reflections (or delaying the time in which they reach the listening position AFTER the original signal), you're also essentially tricking the brain into thinking you're in a larger room.

the termination of this gap is the first significant burst of energy (specular or diffused) that arrives after the anechoic ISD gap, hence "terminating" the gap.

there are psycho acoustic effects that relate to this termination (Haas effect). if you read some of SAC's commentary that i quoted on the previous page, this will be better explained.


it was born out of control room models (LEDE/RFZ) - which each have very specific criteria for how the specular energy arrives and decays at the listening position - but these room models are directly applicable to critical listening rooms (where the room needs to be made as neutral as possible, if that is the design requirement).

with regards to recording (which is not really relevant here, but it does add insight) ... the ITD (Initial Time Delay) is generally used for the length in time in the recording room, and the ISD (Initial Signal Delay) is generally referred to the gap within the control (mixing/listening) room.

so, if music was recorded in a large space where the first reflection arrived 30ms after the original signal ... and you were to play this back in your control room that is much smaller in space (eg first reflection arrives at 15ms) ... this means that your control/listening room is masking the recording., and instead of 'hearing' the room the music was recorded in, you're hearing your listening room mask its sound on top of the recording.

so, the general criteria is to have the ISD of the listening/control room be 2-5ms later than that of the recording room ... so you can hear the room in the recording in totality before your listening room has a chance to mask its sound on top. think about listening to a recording from a large concert hall, and playing it back (reproducing it) in your bathroom. you are going to 'hear' the small acoustical space via the early reflections, versus 'hearing' the concert hall ambiance. if you close your eyes, you'll be aware you're in a very small room vs being transported into 'being' in the room of the recording.

go into your bathroom and close your eyes and begin talking. when you talk, the reflections off the boundaries arrive back at your ear very quickly because of how close the boundaries are, and your brain processes this and you can 'hear' or 'feel' how small the room is. if you did this in a large room (movie theater, warehouse,etc) the reflections would take a much longer time to reach your ears (possibly turning the reflection into a distinct 'echo'), and you could 'feel' how large of a room you're in, even if you were blindfolded.

[ Dernière édition du message le 08/11/2018 à 13:23:35 ]

5
Bonjour,

les mesures (mdat) sont les bienvenues.

J'imagine qu'il y a de gros problème autour de 47 Hz (environ) entre autres.

Y a t il un traitement derrière/dans le mur?

Citation de tcc :
merci pour ta réponse, oui pour les angles je pense faire des bass trap plus conséquent en laine de roche,


Conséquent, ça veut dire 60cm x 60cm x 85cm avec de la laine minérale adaptée, performante pour cette épaisseur.

Si vous devez faire plus petit...je conseillerais autre chose.

Citation de tcc :
les mousse que j'ai mis ne serve strictement à rien. le rectangle au plafond c'est un bass trap avec de la laine de roche de 50mm.


Ce n'est pas un bass trap mais un high trap ;)
50mm, c'est très peu. Surtout pour attaquer le room mode concerné (0-0-1).

Commencez par enlever ces mousses.

En ajoutant des panneaux/traitements aussi fins et non adaptés aux problèmes de la pièce vous ne ferez que la rendre plus "dead".
Voir la 2ème réponse: https://fr.audiofanzine.com/mobilier-accessoires-amenagement/forums/t.651625,je-fabrique-mon-studio,post.9763874.html

Concernant votre creux à 100hz...j'imagine que votre point d'écoute mesuré doit être environ au 1/3 de la pièce (du mur le plug long)?

Autre explication: placement des enceintes. Collez-les contre le mur.

Cordialement,

Jean-Pierre B.

Acoustic Designer @ Neutral & Natural Acoustics

Consultation Acoustique -> me contacter par message privé.

[ Dernière édition du message le 08/11/2018 à 20:20:18 ]

6
Ok merci pour les infos

Je suis actuellement entrain de faire les bass trap d’angles avec de la laine de roche 100mm, après je ne connais pas la quantité qu’il faut mettre j’y vais un peut au pif:(.
J’ai rajouté le bass trap au plafond car j’avais un écho dans le haut du spectre et depuis il a disparu.

Pour info les murs sont en bois avec comme isolations de la laine de bois de 100mm recouvert d’OSB et de lambris, je pense que pas mal de problèmes proviennent du sol c’est un bâtiment construit sur pilotis l’isolation entre les lambourdes sont des copeaux de chanvre et le parquet directement posés dessus. Il y a beaucoup de résonance venant du planché par endroit.

Citation :
Concernant votre creux à 100hz...j'imagine que votre point d'écoute mesuré doit être environ au 1/3 de la pièce (du mur le plug long)?

Oui mais comme je le dis dans le premier post c’est une pièce carré donc murs identiques.
7
Citation de tcc :
Ok merci pour les infos


J'espère qu'elles vous seront utiles.

Citation de tcc :

Je suis actuellement entrain de faire les bass trap d’angles avec de la laine de roche 100mm, après je ne connais pas la quantité qu’il faut mettre


https://fr.audiofanzine.com/panneau-traitement-acoustique/forums/t.677242,quid-des-panneaux-de-laine-de-roche-rigide,post.9758978.html


Citation de tcc :
j’y vais un peut au pif:(.


Pourquoi faire ça au pif?

Réponse 2ème réponse:
https://fr.audiofanzine.com/mobilier-accessoires-amenagement/forums/t.651625,je-fabrique-mon-studio,post.9763874.html

Citation de tcc :
Citation de Jean-Pierre :
Concernant votre creux à 100hz...j'imagine que votre point d'écoute mesuré doit être environ au 1/3 de la pièce (du mur le plug long)?

Oui mais comme je le dis dans le premier post c’est une pièce carré donc murs identiques.


Ce n'est pas la raison du creux. Essayez d'avancer votre point d'écoute. Et collez vos enceintes contre le mur.
traitement-isolation-acoustique-2417164.png

Cordialement,

Jean-Pierre B.

Acoustic Designer @ Neutral & Natural Acoustics

Consultation Acoustique -> me contacter par message privé.

[ Dernière édition du message le 10/11/2018 à 18:50:01 ]