Se connecter
Se connecter

ou
Créer un compte

ou
FR
EN
Synthèse Sonore

Une idée dans la nuit.

  • 21 réponses
  • 7 participants
  • 1 884 vues
  • 1 follower
Sujet de la discussion Une idée dans la nuit.
Salut,
à priori y'a du beau monde qui se ballade par ici alors je me lance.
J'ai eu une idée de soft (je pense pas que ca existe) qui est un trouveur de patch synthé.
En entrée: de l'audio, une note d'un synthé...
on dit ce qu'on a à dispo: 2 oscillos, 1 filtre passe bas etc... et le soft ressort les paramètres qui permettent d'obtenir le son le plus approchant en fonction de que l'on a sous la mains: ton premier osc coco, c'est un triangle, le 2eme un sine ring-mod avec le 1er, détuné -1/2 etc... etc...
vous avez compris le principe.
Pour avoir fait, y'a longtemps, des réseaux de neurones, qui je sais marche plutot bien en classification et pas top en prédiction, je me disais que peut etre ca pourrait coller.
En apprentissage, les sons des différents composants possibles, avec toute leur variation possible.
Voila, si vous pouviez me donner votre avis sur l'interet/faisabilité de la chose...
2
Slt guy, ton idée pourrait fonctionner sur le principe de la synthese additive non?
Warpboy@kagura lab...
3
Je ne sais pas, le but n'étant pas de faire de la synthèse en fait.
De ce que je sais sur la synthèse additive (i.e. peu), je ne vois pas trop comment ca pourrait le faire...
4
Hello :bravo:

Citation : le but n'étant pas de faire de la synthèse en fait.


Citation : le son le plus approchant en fonction de que l'on a sous la mains



Si c'est de l'analyse resynthese que tu veux faire

Sur les problematique de l'analyse-resynthese, Voila mes conseils...

L'additif c'est bien mais ca demande d'avoir un max d'ocillo...
POur faire l'analyse du son et recuperer les parametres en vue d'une resynthese additive...tu peux passer en representation temps frequence (j'essaye de trouver un espace de transformation utile car les SFFT ca craint ... le probleme c'est qu'il y a un compromis a faire entre la precision temporelle et frequentielle)...apres tu recuperes les harmoniques les plus importantes tu traques eventuellement le deplacement en frequence dans le temps de ces harmoniques (si chirp il y a )...puis tu choppes leur enveloppe puis leur phase....L'IRCAM a developpé un soft qui s'appelle additif et qui fait ca...c'est ce soft qui a été utilisé par peugeot pour faire de l'analyse resynthese de son de moteur de voiture

Pour la soustracive, j'avais essayé d'utilisé des algos de signal adaptatif....c'est a dire que tu essayes de trouver le filtre le plus approprié...j'ai implementé ca avec trop d'enthousiasme et ca marche moyen (du a mon implementation)...ca reste des algos de descente de gradient comme pour les réseaux de neurones

Citation : Pour avoir fait, y'a longtemps, des réseaux de neurones, qui je sais marche plutot bien en classification et pas top en prédiction, je me disais que peut etre ca pourrait coller.
En apprentissage, les sons des différents composants possibles



Ca demanderais de se prendre le cailloux a bloc..avec une note en entrée les neurones devrait reagir comme des oscillateurs avec une enveloppe et une frequence par neurone...
Une fois que tu obtiens la sortie, il faudrait pouvoir repondre a la question...J'ai telle erreur qu'est ce que je met a jour :?: (c'est ce qu'on appelle le credit assignement problem)...au niveau statistique et mathematique je pense que c'est trop dur à resoudre :??: Deja que l'algorithme de retro propagation est assez recent alors si tu demande de mettre a jour les enveloppe, les frequences etc etc meme Einstein laisserait tombé a mon avis

A l'heure actuelle c'est la synthese additive (+ eventuellement granulaire pour les bruits de fond) que l'on utilise....je pense qu'il faut que tu utilises ca

En tout cas c'est des problematiques qui m'interesse beaucoup...s t'as des idees exposent les ici, je peux peut etre avoir un point de vue critique sur leur implementation...Une question, c'est l'air troyen qui nous rend geek comme ca ou quoi :8O:
5
Merci d'avoir si longuement répondu.
Le choix du réseau de neurone était en fait pour ne pas faire d'analyse de signal (vade retro FFT).
Maintenant, est-ce réalisable ... aucune idée.
J'ai vu que tu avais mis des références sur l'application des rdn pour la reconnaissance polyphonique ds un autre post... il faudrait que je potasse ca.
Je ne me suis pas du tout penché sur l'implémentation, c'était avant tout une idée, et savoir si elle était viable ou non (du genre "impossible à faire avec des rdn, bcp s'y sont cassés les dents") avant de me pencher sur les problèmes d'implémentation à proprement parler.

Mais j'ai d'autres idées dans ma besace, sans bien sur savoir si elles sont interessantes concrétement ou pas. Mais en particulier une, qui est en plus facilement implémentable:
travailler au niveau des samples considérés uniquement comme des bits (et en faisant totalement abstraction du signal qu'il peuvent représenter), afin de les transformer.
Je risque bcp de n'obtenir que de la merde, mais bon.
6
OK, en terme de synthese de mon coté je vais essayé de customisé des algos adaptatifs et voir si on peut en tirer quelque chose...

J'ai aussi un projet de synthese de son par chaine de Markov...a voir...je sais pas si ca peut donner quelque chose de sympa..

En tout cas dans ces delires la, il faut mieux se rensigner a droite a gauche (publi etc) pour savoir ce qui a deja été fait
7

Citation :
En tout cas dans ces delires la, il faut mieux se rensigner a droite a gauche (publi etc) pour savoir ce qui a deja été fait


oui, c'est aussi pour cela que je poste ici...
mais je suivrai attentivement tes pérégrinations ds le monde de la synthèse
8
Euh, et la décomposition on ondelette, au lieu de la FFT, ca vous brancherait pas ?
En plus, il reste à choisir la famille de fontion ...
9

Citation : Pour avoir fait, y'a longtemps, des réseaux de neurones, qui je sais marche plutot bien en classification et pas top en prédiction



C'est une idée reçue :

C'est simplement parceque le principe même du réseau (et de son apprentissage) le rend TRES sensible à la qualité ou à la représentativité de l'ensemble des vecteurs d'apprentissage, et qu'un ensemble représentatif est beaucoup facile à constituer pour un problème de classification que d'interpolation (prédiction).

Mais à qualité de données d'apprentissage égale, le réseau marche aussi bien dans les 2 cas.
En plus, pour un problème donné qui semble "bien marcher" en classification, une solution par SVM marchera généralement plutôt mieux, puisque le SVM ne cherche à définir que la "frontière" entre les classes ...

Je trouve ça pluitôt sympa qu'il y ai du monde sur AF qui s'intéresse à la recherche de nouveaux principes de synthèse ...

J'ai fait une grande réponse à Choc sur un autre Post à propose de synthèse et réseau de neurones, si ça t'intéresse ...
https://fr.audiofanzine.com/apprendre/mailing_forums/index,idtopic,90019,idsearch,2448990.html
Willy, zicos electronicien et algorithmes mathématiques
10
Pour le coup Classification vs Prédiction, c'était ce que notre prof de RdN nous avait dit il y a 10 ans... ca a peut être changé :noidea:
je vais lire ton autre post...
11

Hors sujet : Demande d'un petit coup de main :bravo:

sur

http://fr.briefcase.yahoo.com/
compte : reaktor_af
mot de passe : cdelabombe

repertoire choc, fichier MLP

J'ai realisé une doc rapdide sur les MLP pour la classif (je dois redigé un petit truc)...
J'ai pas totallement terminé : Des suggestions, des commentaires, Est-ce clair :?:

12

Hors sujet :
j'ai chargé ton pdf... je le lis et te fais des commentaires ici même

13
Note : allez voir dans la méthode ESPRIT ou MUSIC, des décompositions fréquentielles qui ont pas le meme compromis temps frequence que la fft, c'est bien bourrin.
Il est possible que je fasse mon stage de dea exactement sur le sujet de ce thread c'est amusant, la reconaissance des parametres de synthese FM ayant mené a la synthese d'un son en particulier, mais j'y pense ca ressemble affreusement a des modeles de markov cache ? je dis peut etre n'importe quoi. Il est trop tot.
14

Citation : allez voir dans la méthode ESPRIT ou MUSIC, des décompositions fréquentielles qui ont pas le meme compromis temps frequence que la fft, c'est bien bourrin.



Hou y'en a plein des representations temps frequence...je bosse actuellement sur les representations temps frequences type SFFT adaptative (on change la fenetre au fur et a mesure du temps...) ..très utile en synthèse FM pour des signaux type CHirp

Citation : mais j'y pense ca ressemble affreusement a des modeles de markov cache ?



C'est utilisé dans la methode cité au dessus pour determiné la frequence centrale de la fenetre

Citation : Il est possible que je fasse mon stage de dea exactement sur le sujet de ce thread c'est amusant, la reconaissance des parametres de synthese FM ayant mené a la synthese d'un son en particulier



OK, je vois le personnage, un gars d'ATIAM surement (desolé je suis aigris car je me suis fait recallé apres les entretiens :furieux: )...alors voila je sais que tu ne me diras pas quel est le labo qui presente le sujet...et puis de toutes facon meme si je suis specialisé en signal/temps frequence/stat, je sais que les labos prefererons prendre un gars d'ATIAM moins spécialisé...Belle mentalité ....

Sans rancune :clin: :8) Le sujet à l'air tres interessant en tout cas (cf si tu viens du DEA acoustique de marseille et du Mans oublie ce que j'ai dis plus haut )

Hors sujet : Voudrait peut etre que je me fasse pyschanalyser :idee: ....je fais une fixation sur l'IRCAM :8O: :mdr:

15
Rho un aigris..

mais un aigris qui voit juste
BISOUS COPAIN
c'est vrai quoi un peu d'amour
16

Hors sujet : :bravo: Desolé mais comprend moi, ca m'a vraiement degoutté le coup de me faire rembaré apres les entretiens :8)

17

Hors sujet : Moi, la question ne s'est même pas posée : recalé sur dossier...

Messieurs, pour faire bifurquer un instant la discussion, quelqu'un peut m'aider un peu là dessus ?...

NB : Choc, j'ai rejeté un coup d'oeil à Fourier etc. Je pense que je ne suis plus du tout au point pour t'aider sur ton projet "alternative à Additive"... j'ai besoin d'une sacrée remise à niveau.

EDIT : pardon pour la mailing list, j'avais oublié le HS...

18
BINARY mIND>

Tiens je viens de decortiquer une publi interessante sur les representations temps frequence adaptative...appliqué à la demodulation de fréquence...

« Improved Instantaneous Frequency Estimation Using an Adaptive Short Time Fourier Transform » rédigée par K.Kwok et L.Jones. L’article à été publié dans le journal IEEE Transaction on Signal Processing en octobre 2000.

Ca utilise des ASTFT (Adaptive Short Time Fourrier Transform) pour la TFT couplé avec des HMM pour le tracking de la porteuse lorsque le SNR est faible (environnement bruité)....

Comme D'hab d'apres les auteurs ca marchent bien :mdr: mais bon j'ai besoin de plus de 3 graphes pour en etre persuadé :bravo:
19
Tiens c'est cool ca
tu peux m'envoyer ca sur mon mail ? (pas access a l'ieee d'ici) liutkus at ircam
merci !
20

Hors sujet : Je l'ai que sur version papier et j'ai pas de scanner.... :8O:

21
Ok,
jregarderai ca a l'occasion =)
22

Hors sujet : > Binary t'as commencé ton stage :?:
Le sujet concerne bien la synthèse FM....Je serais curieux de voir ce que ca donne (au niveau biblio)...on entend toujours dire beurk..la FM ca craint en outil d'analyse on a rien..si t'as trouvé des articles qui contredisent ca, ca m'interesse