Choix compression/pavillon
- 21 réponses
- 5 participants
- 3 859 vues
- 5 followers
ffwill
233
Posteur·euse AFfiné·e
Membre depuis 19 ans
Sujet de la discussion Posté le 26/03/2007 à 23:59:53Choix compression/pavillon
Bonjour
je voudrais me faire deux enceintes plutôt compacte pour sonoriser des petites soirée privée/concert.
je dispose de deux haut parleur 38cm GT38 de Ghost
(oui je sais les truc chinois et tout et tout.... pour des réflexions de ce genre tu peux passer ton chemin ;))
Initialement ils étaient prévu pour des caissons basse mais il supportait pas le Basse-Reflex imposé. On en a que pour son argent!(et j'en ai pas beaucoup )
Mais vu ce que j'ai pu entendre je pense qu'ils feront l'affaire pour du grave/médium
Bon si je vois que je peut rien en obtenir je le changerais plus tard avec un peu plus d'argent
Voila mes souvenir ces caractéristiques il monte à 3,5khz avec 97 dB de rendement
Je pensais les couper à 2K.
mais je ne sait pas ce que prendre comme compression/pavillon
je pense metre 200euro en tout donc 100 euro pour un kit compression et pavillon
je voudrais me faire deux enceintes plutôt compacte pour sonoriser des petites soirée privée/concert.
je dispose de deux haut parleur 38cm GT38 de Ghost
(oui je sais les truc chinois et tout et tout.... pour des réflexions de ce genre tu peux passer ton chemin ;))
Initialement ils étaient prévu pour des caissons basse mais il supportait pas le Basse-Reflex imposé. On en a que pour son argent!(et j'en ai pas beaucoup )
Mais vu ce que j'ai pu entendre je pense qu'ils feront l'affaire pour du grave/médium
Bon si je vois que je peut rien en obtenir je le changerais plus tard avec un peu plus d'argent
Voila mes souvenir ces caractéristiques il monte à 3,5khz avec 97 dB de rendement
Je pensais les couper à 2K.
mais je ne sait pas ce que prendre comme compression/pavillon
je pense metre 200euro en tout donc 100 euro pour un kit compression et pavillon
Hors sujet : un avis sur selenium?
ffwill
233
Posteur·euse AFfiné·e
Membre depuis 19 ans
11 Posté le 30/03/2007 à 16:09:06
Citation : Par ce qu'en gros, je pense que 100dB à 10khz + 100dB à 50hz = 100dB à 10khz et 100dB à 50hz, mais certainement pas 103dB.
Et pourtant d'après Fourier Si!
Les énergies de chaques fréquences se somment pour donner l'energie total
mais ta réponse est normale nos oreilles entendront toujours 100dB à 10khz et 100dB à 50hz et pas l'énergie total (la musique serait drolement pauvre dans un tel cas)
Ilo
3359
Squatteur·euse d’AF
Membre depuis 20 ans
12 Posté le 30/03/2007 à 16:56:52
Selecta Biss@
1738
AFicionado·a
Membre depuis 19 ans
13 Posté le 03/04/2007 à 14:27:44
C'est bizare cette histoire... Moi je pensse que c'est ilo qui à raison, on gagne 3dB quand on double la source, à condition que les deux sources travaillent sur les mêmes plages de frécances.
Bon en même temps la physique acoustique je t'avoue que c'est pas ce que je connais le plus ;) mais ya un truc qui me chifone.
PS: si tu a explication fait m'en part.
Bon en même temps la physique acoustique je t'avoue que c'est pas ce que je connais le plus ;) mais ya un truc qui me chifone.
PS: si tu a explication fait m'en part.
ffwill
233
Posteur·euse AFfiné·e
Membre depuis 19 ans
14 Posté le 04/04/2007 à 13:22:51
Avec des Maths ou sans?
PS:la première est plus facile pour moi!
PS:la première est plus facile pour moi!
Selecta Biss@
1738
AFicionado·a
Membre depuis 19 ans
15 Posté le 04/04/2007 à 14:44:23
Bah fait comme c'est le plus simple pour toi; mais si tu peut y mettre un peut de mathes (en gros) ça m'interresse aussi. ;)
ffwill
233
Posteur·euse AFfiné·e
Membre depuis 19 ans
16 Posté le 10/04/2007 à 13:37:01
Oups desolé pour le retard...
la puissance aussocié à un signal depand du carré de celui-ci
signal => énergie = signal^2
donc une sinusoide de frequence F1:
sin(2*PI*F*t) => sin(2*PI*F*t)^2
si tu as deux sinusoides de frequence F1 et F2
sin(2*PI*F1*t)+sin(2*PI*F2*t) => sin(2*PI*F1*T)^2 + 2*sin(2PI*F1*t)*sin(2PI*F2*t) + sin(2*PI*F2*T)^2
(utilise les bonne vielles identités remarquable (a+b)^2=a^2+2*a*b+b^2 ;))
donc dans les termes tu retrouves
sin(2*PI*F1*T)^2:l'energie de la première frequence
sin(2*PI*F2*T)^2:l'energie de la frequence F2
et un terme un peu bizzard:
2*sin(2PI*F1*t)*sin(2PI*F2*t)
ce terme vaut:
cos(2PI*(F1-F2)*t)+cos(2PI*(F1+F2)*t)
ce sont des sinusoides donc en moyenne dans le temps leur valeur est nulle
donc au final si tu "lisses" l'energie de tes signaux dans le temps tu retrouves bien le fait que
deux sinusoide ont le double d'energie qu'une sinusoide
la puissance aussocié à un signal depand du carré de celui-ci
signal => énergie = signal^2
donc une sinusoide de frequence F1:
sin(2*PI*F*t) => sin(2*PI*F*t)^2
si tu as deux sinusoides de frequence F1 et F2
sin(2*PI*F1*t)+sin(2*PI*F2*t) => sin(2*PI*F1*T)^2 + 2*sin(2PI*F1*t)*sin(2PI*F2*t) + sin(2*PI*F2*T)^2
(utilise les bonne vielles identités remarquable (a+b)^2=a^2+2*a*b+b^2 ;))
donc dans les termes tu retrouves
sin(2*PI*F1*T)^2:l'energie de la première frequence
sin(2*PI*F2*T)^2:l'energie de la frequence F2
et un terme un peu bizzard:
2*sin(2PI*F1*t)*sin(2PI*F2*t)
ce terme vaut:
cos(2PI*(F1-F2)*t)+cos(2PI*(F1+F2)*t)
ce sont des sinusoides donc en moyenne dans le temps leur valeur est nulle
donc au final si tu "lisses" l'energie de tes signaux dans le temps tu retrouves bien le fait que
deux sinusoide ont le double d'energie qu'une sinusoide
neilujlefds
393
Posteur·euse AFfamé·e
Membre depuis 18 ans
17 Posté le 10/04/2007 à 14:38:51
Chapeau très bonne explication.
Selecta Biss@
1738
AFicionado·a
Membre depuis 19 ans
18 Posté le 11/04/2007 à 16:30:37
.......................... Ok bah heuresement que j'avais demandé un peut de math
Mais sans pouvoir en aporter la preuve mathématique j'ai quand même réussit à comprendre ou tu voulais en venir.
Mais sans pouvoir en aporter la preuve mathématique j'ai quand même réussit à comprendre ou tu voulais en venir.
ffwill
233
Posteur·euse AFfiné·e
Membre depuis 19 ans
19 Posté le 12/04/2007 à 09:03:26
Si tu veux la preuve mathematique tu passes chaque expression d'energie pour obtenir la puissance du signal par
lim (1/T* intégrale sur [-T/2,T/2] f(t))
T->+inf
(ce qui correspond en gros au " moyenne dans le temps "
mais bon il faut un peu plus que le niveau 3em)
lim (1/T* intégrale sur [-T/2,T/2] f(t))
T->+inf
(ce qui correspond en gros au " moyenne dans le temps "
mais bon il faut un peu plus que le niveau 3em)
Selecta Biss@
1738
AFicionado·a
Membre depuis 19 ans
20 Posté le 12/04/2007 à 11:15:51
Grrrrrrrr merci pour le niveau 3em ... Nan c'est bon la preuve mathématique risquerai de me causer des domages cérébraux.
- < Liste des sujets
- Charte