Le numérique
- 39 réponses
- 9 participants
- 1 877 vues
- 1 follower
Anonyme
521410
Sujet de la discussion Posté le 03/03/2004 à 15:02:41Le numérique
Des questions que beaucoup de posent :
Différence entre les formats ?
Y'a t'il des différences de qualités entre 2 matériels différents pour un même format ?
Qu'est-ce qui peut dégrader un signal numérique ?
Bref, une sorte de FAQ serait utile en somme...
Si y'a des gens suffisament calés pour répondre.
Différence entre les formats ?
Y'a t'il des différences de qualités entre 2 matériels différents pour un même format ?
Qu'est-ce qui peut dégrader un signal numérique ?
Bref, une sorte de FAQ serait utile en somme...
Si y'a des gens suffisament calés pour répondre.
vandyck
2224
AFicionado·a
Membre depuis 21 ans
21 Posté le 03/03/2004 à 16:01:34
Intérêt ? j'imagine qu'il y a eu une bonne raison à ça à une époque, mais laquelle ... en tout cas ça ne change en rien au son.
Tiens d'ailleurs je viens de voir que le wave est little endian alors que le AIFF est big endian. On est bien avancé.
Tiens d'ailleurs je viens de voir que le wave est little endian alors que le AIFF est big endian. On est bien avancé.
piaz
1645
AFicionado·a
Membre depuis 21 ans
22 Posté le 03/03/2004 à 16:16:27
Ben oui : intel a inventé le little, motorola le big... Mais la raison !!!
Ah, bah, voilà de quoi nous satisfaire : http://www.cs.umass.edu/%7Everts/cs32/endian.html
Ah, bah, voilà de quoi nous satisfaire : http://www.cs.umass.edu/%7Everts/cs32/endian.html
Piaz
funkiness
894
Posteur·euse AFfolé·e
Membre depuis 21 ans
23 Posté le 03/03/2004 à 16:20:38
T'es sûr Piaz ?
Enfin surtout pour le big ?
Enfin surtout pour le big ?
funkiness
894
Posteur·euse AFfolé·e
Membre depuis 21 ans
24 Posté le 03/03/2004 à 16:31:54
C'est geek à mort je l'avoue mais bon tant qu'on y est...
Vu sur un forum:
For example, with the PowerPC simulator, running on a 200 Mhz Pentium Pro, I ran dhrystone for 1000000 passes, and got the following results:
Big endian, default simulator 949,172 simulated instructions/second
Little endian, default sim 960,067 simulated instructions/second
Big endian, optimized simulator 1,067,769 simulated instructions/second
Little endian, optimized sim. 1,070,457 simulated instructions/second
Et une baston sympa
Vu sur un forum:
For example, with the PowerPC simulator, running on a 200 Mhz Pentium Pro, I ran dhrystone for 1000000 passes, and got the following results:
Big endian, default simulator 949,172 simulated instructions/second
Little endian, default sim 960,067 simulated instructions/second
Big endian, optimized simulator 1,067,769 simulated instructions/second
Little endian, optimized sim. 1,070,457 simulated instructions/second
Et une baston sympa
faya vince
7988
Je poste, donc je suis
Membre depuis 21 ans
25 Posté le 03/03/2004 à 16:38:20
alerte geek de ouf
surtout que je comprends rien
surtout que je comprends rien
on a bien ri...
piaz
1645
AFicionado·a
Membre depuis 21 ans
26 Posté le 03/03/2004 à 16:43:29
Je suis à la réponse 15, mais j'adoooooooooooore
Piaz
funkiness
894
Posteur·euse AFfolé·e
Membre depuis 21 ans
27 Posté le 03/03/2004 à 16:45:16
C'est mignonnement expliqué:
Quite a while ago Jonathan Swift reported on serious disagreements between the Big-Endians and the Little-Endians, two factions within the society of Lilliput, on a matter of fundamental importance: Big-Endians break their eggs at the larger end (``the primitive way"), while Little-Endians break it at the smaller end, and doing so support the view of the Emperor who had ``published an edict, commanding all his subjects, upon great penaltys, to break the smaller end of their eggs.'' The issue was very serious indeed because the Big-Endians ``so highly resented this law, that our historys tell us there have been six rebellions raised on that account; wherein one Emperor lost his life, and another his crown.'' [Part I, Chapter IV, Swift1726].
Quite a while ago Jonathan Swift reported on serious disagreements between the Big-Endians and the Little-Endians, two factions within the society of Lilliput, on a matter of fundamental importance: Big-Endians break their eggs at the larger end (``the primitive way"), while Little-Endians break it at the smaller end, and doing so support the view of the Emperor who had ``published an edict, commanding all his subjects, upon great penaltys, to break the smaller end of their eggs.'' The issue was very serious indeed because the Big-Endians ``so highly resented this law, that our historys tell us there have been six rebellions raised on that account; wherein one Emperor lost his life, and another his crown.'' [Part I, Chapter IV, Swift1726].
piaz
1645
AFicionado·a
Membre depuis 21 ans
28 Posté le 03/03/2004 à 16:54:27
Ah, alors donc c'était des rebelles chez Motorola lol
Très bon le Gulliver, on n'en a jamais assez.
Très bon le Gulliver, on n'en a jamais assez.
Hors sujet :
Rien à voir, mais Arthur chance, le mec qui clôture le thread cité plus haut, a une signature qui m'interpelle grave dans mon vécu quotidien:
This message is Mime compatible - it can coexist with lying dwarves
who sing in German.
Bon, ok, mime, tout va bien, mais quelqu'un voit-il le rapport avec les nains allemands???
Piaz
funkiness
894
Posteur·euse AFfolé·e
Membre depuis 21 ans
29 Posté le 03/03/2004 à 17:18:37
En fait je pense que c'est plutôt le big qui est arrivé avant le little.
En tout cas les rebelles se sont fait matter vu qu'ils vont du big... et du little maintenant (enfin sur leurs powerpc).
En tout cas les rebelles se sont fait matter vu qu'ils vont du big... et du little maintenant (enfin sur leurs powerpc).
Hors sujet : Oula, j'ai pas capté non plus. Va falloir fouiller dans les rfc !
funkiness
894
Posteur·euse AFfolé·e
Membre depuis 21 ans
30 Posté le 03/03/2004 à 17:23:11
Bon, comme tu kiffes gulliver, la suite:
The fights between Big-Endians and Little-Endians continued and became even more vigorous when, with the advent of modern computing machines, new issues arose: should numbers be stored most or least significant byte first? Big-endians insist that the ``big end" is stored first because this is the way God intended integers to be represented, most important part first. Those in the big-endian camp include the Java VM virtual computer, the Java binary file format, the IBM 360 and and most mainframes. Little-Endians assert that putting the low-order part first is more natural because when you do arithmetic, you start at the least significant part and work toward the most significant part. In the little-endian camp are the Intel 8080, 8086, 80286, Pentium and follow ons and the MOS 6502.
A yet more serious battle between the two factions arose when the people of Lilliput abandonded their traditional games like chess, soccer, Russian roulette, etc. and started to play parity games. The little-endian rules for playing parity games assert, quite reasonably, that the smallest priority occurring infinitely often in a play determines the winner. The Big-Endians on the other side insist, strangely enough, that it is the largest priority seen infinitely often that decides who wins the game.
The goal of this work is to settle this issue once and for all and to prove that the Little-Endians are right. One method to do so would of course be to show the existence of an egg that can only be broken at the smaller end. However, it can be proved that the size of such an egg would necessarily have to be infinite; hence at least a constructive proof seems out of reach for present methodology. Instead we resolve this issue by way of parity games with infinitely many priorities. Whatever arguments there are between Little-Endians and Big-Endians, both factions agree that the right way to win parity games is via positional strategies or, if these are unavailable, finite-memory strategies, because the use of infinite memory ``is just not fair''. We prove here that any parity game with priorities in w, defined in the little-endian style, can indeed be won be means of a positional winning strategy. The Big-Endians, however, miserably fail on their variant of parity games, as soon as they admit infinitely many priorities.
The fights between Big-Endians and Little-Endians continued and became even more vigorous when, with the advent of modern computing machines, new issues arose: should numbers be stored most or least significant byte first? Big-endians insist that the ``big end" is stored first because this is the way God intended integers to be represented, most important part first. Those in the big-endian camp include the Java VM virtual computer, the Java binary file format, the IBM 360 and and most mainframes. Little-Endians assert that putting the low-order part first is more natural because when you do arithmetic, you start at the least significant part and work toward the most significant part. In the little-endian camp are the Intel 8080, 8086, 80286, Pentium and follow ons and the MOS 6502.
A yet more serious battle between the two factions arose when the people of Lilliput abandonded their traditional games like chess, soccer, Russian roulette, etc. and started to play parity games. The little-endian rules for playing parity games assert, quite reasonably, that the smallest priority occurring infinitely often in a play determines the winner. The Big-Endians on the other side insist, strangely enough, that it is the largest priority seen infinitely often that decides who wins the game.
The goal of this work is to settle this issue once and for all and to prove that the Little-Endians are right. One method to do so would of course be to show the existence of an egg that can only be broken at the smaller end. However, it can be proved that the size of such an egg would necessarily have to be infinite; hence at least a constructive proof seems out of reach for present methodology. Instead we resolve this issue by way of parity games with infinitely many priorities. Whatever arguments there are between Little-Endians and Big-Endians, both factions agree that the right way to win parity games is via positional strategies or, if these are unavailable, finite-memory strategies, because the use of infinite memory ``is just not fair''. We prove here that any parity game with priorities in w, defined in the little-endian style, can indeed be won be means of a positional winning strategy. The Big-Endians, however, miserably fail on their variant of parity games, as soon as they admit infinitely many priorities.
- < Liste des sujets
- Charte