Théorème de Shannon.
- 103 réponses
- 12 participants
- 4 249 vues
- 20 followers
ChatNon
186
Posteur·euse AFfiné·e
Membre depuis 6 ans
Sujet de la discussion Posté le 11/05/2018 à 20:29:22Théorème de Shannon.
Bonjour,
Je viens vous poster une question de mathématiques.
Le théorème d’échantillonnage de Shannon, qui prévoit une fréquence égale au moins au double de la fréquence maximale du signal est il résolu pour des valeurs d'échantillons appartenant à R (ensemble des nombres Réels) ou pour un ensemble fini comme 3 bits, ou 24 Bits par exemple?
je parle d’échantillonner un signal évidemment continu (audio).
Merci par avance,
Je viens vous poster une question de mathématiques.
Le théorème d’échantillonnage de Shannon, qui prévoit une fréquence égale au moins au double de la fréquence maximale du signal est il résolu pour des valeurs d'échantillons appartenant à R (ensemble des nombres Réels) ou pour un ensemble fini comme 3 bits, ou 24 Bits par exemple?
je parle d’échantillonner un signal évidemment continu (audio).
Merci par avance,
trazom
1819
AFicionado·a
Membre depuis 20 ans
11 Posté le 11/05/2018 à 23:21:04
Cool, alors bonne nuit.
Ronerone
1205
AFicionado·a
Membre depuis 20 ans
12 Posté le 11/05/2018 à 23:24:08
je suis pas sur de comprendre la question... mais l'échantillonnage ne fait que "ponctionner" des valeurs à une fréquence donnée.
C'est la résolution ensuite qui détermine l'ensemble des valeurs possibles.
Plus la fréquence d'échantillonnage est élevée, plus le nombre de valeurs comprises dans l'échelle des possibles sera grand, mais pour autant le nombre de valeurs dans cette échelle ne dépend que de la résolution.
Plus la résolution sera importante en revanche, plus la finesse d'approximation sera précise. C'est la combinaison des deux (fréquence d'échantillonnage et résolution) qui permet d'approcher au mieux la réalité analogique.
La qualité des convertisseurs (et de l'horloge) permettra quant à elle d'une part de retranscrire au mieux la représentation du réel par des valeurs échantillonnées, et également de le faire au mieux dans l'ensemble de la plage de ses capacités (effets de bords liés au dépassement de certaines limites comme la saturation, jitter, sensibilité au bruit électromagnétique, etc.)
Je sors ça du fin fond de mes souvenirs, c'est peut-être pas très exact
C'est la résolution ensuite qui détermine l'ensemble des valeurs possibles.
Plus la fréquence d'échantillonnage est élevée, plus le nombre de valeurs comprises dans l'échelle des possibles sera grand, mais pour autant le nombre de valeurs dans cette échelle ne dépend que de la résolution.
Plus la résolution sera importante en revanche, plus la finesse d'approximation sera précise. C'est la combinaison des deux (fréquence d'échantillonnage et résolution) qui permet d'approcher au mieux la réalité analogique.
La qualité des convertisseurs (et de l'horloge) permettra quant à elle d'une part de retranscrire au mieux la représentation du réel par des valeurs échantillonnées, et également de le faire au mieux dans l'ensemble de la plage de ses capacités (effets de bords liés au dépassement de certaines limites comme la saturation, jitter, sensibilité au bruit électromagnétique, etc.)
Je sors ça du fin fond de mes souvenirs, c'est peut-être pas très exact
[ Dernière édition du message le 11/05/2018 à 23:25:08 ]
static volatile
1793
AFicionado·a
Membre depuis 7 ans
13 Posté le 11/05/2018 à 23:28:19
Citation de ChatNon :
Moi j'ai juste l'impression qu'un signal échantillonné en valeur fini ne peut jamais être parfaitement fidèle à un signal continu. Çà reste des approximations, plutôt très bonnes par ailleurs, mais des approximations, comme tout en numérisation.
Si tu vas par là, le simple fait d'amplifier un signal est une approximation car tu n'auras pas une fonction de transfert parfaitement linéaire dans un circuit électronique.
Par contre, tu prends un signal analogique, normalisé pour que la valeur de créte soit idéale pour un convertisseur donné.
Un convertisseur moderne ne quantifiera pas de la méme manière les modulations de faible amplitude que les modulations à plein échelle, justement afin réduire le bruit de quantification pour les signaux faibles.
Quand bien même ce convertisseur ne ferait "que" 16 bits, l'erreur sera tout à fait inaudible.
Un petit truc de formulation qui m'a beaucoup aidé lorsque j'ai été confronté à Shannon-Nyquist dans mes études.
Dire que le théorème prévoit une fréquence égale au moins au double de la fréquence maximale du signal n'est pas la formulation la plus correcte.
Une meilleure formulation, à mon point de vue, serait de dire que le théorème démontre qu'il n'y a aucune perte d'information si l'échantillonnage se fait à une fréquence au moins deux fois supérieure à la fréquence maximale contenant l'information qu'on veut discrétiser et que la reconstruction de ce signal (passage du domaine discret au domaine continu) se fera sans erreur.
En gros, si la discrétisation a été faite en respectant les critères de Shannon-Nyquist, on peut affirmer qu'il n'y a qu'une et une seule fonction passant par tous les points discrets et que cette fonction contient l'intégralité de l'information qui existait avant discrétisation.
Resistance is not futile... it's voltage divided by current
trazom
1819
AFicionado·a
Membre depuis 20 ans
14 Posté le 11/05/2018 à 23:29:41
Tiens, je t'ai fait un petit exemple un peu pourrave.
Un son de 9 Hz (ligne rouge) et ce qu'il devient après numérisation à 20 Hz.
On peut pas dire que c'est fidèle. Le nombre de bit n'y changera rien. Le problème ne vient pas de la position verticale de chaque sommet de la ligne noire, mais du fait que ma grille verticale est grossière.
Néanmoins, les informations enregistrées doivent permettre (en théorie) de retrouver le signal initial.
Un son de 9 Hz (ligne rouge) et ce qu'il devient après numérisation à 20 Hz.
On peut pas dire que c'est fidèle. Le nombre de bit n'y changera rien. Le problème ne vient pas de la position verticale de chaque sommet de la ligne noire, mais du fait que ma grille verticale est grossière.
Néanmoins, les informations enregistrées doivent permettre (en théorie) de retrouver le signal initial.
[ Dernière édition du message le 11/05/2018 à 23:35:04 ]
ChatNon
186
Posteur·euse AFfiné·e
Membre depuis 6 ans
15 Posté le 11/05/2018 à 23:33:23
AAb, tu dis: "Une meilleure formulation, à mon point de vue, serait de dire que le théorème démontre qu'il n'y a aucune perte d'information si l'échantillonnage se fait à une fréquence au moins deux fois supérieure à la fréquence maximale contenant l'information qu'on veut discrétiser et que la reconstruction de ce signal (passage du domaine discret au domaine continu) se fera sans erreur."
c'est là que je ne suis pas d'accord. Discrétiser, c'est perdre de l'information, qu'elle que soit la fréquence d’échantillonnage, si le signal d'origine est continu.
c'est là que je ne suis pas d'accord. Discrétiser, c'est perdre de l'information, qu'elle que soit la fréquence d’échantillonnage, si le signal d'origine est continu.
ChatNon
186
Posteur·euse AFfiné·e
Membre depuis 6 ans
16 Posté le 11/05/2018 à 23:36:20
Le théorème de Shannon prétend seulement que tu peut prendre un nombre fini d'échantillons, fixés en fonction de la fréquence de Nyquist. mais les échantillons doivent être à valeurs réelles, pour une fidélité parfaite. Et si tu les discrétise, tu commences à perdre de l'information.
Jimbass
11603
Drogué·e à l’AFéine
Membre depuis 18 ans
17 Posté le 11/05/2018 à 23:37:42
Citation de trazom :
Attention de ne pas en déduire qu'une fréquence de 4000 Hz permet d'enregistrer correctement tout ce qui est en dessous de 2000 Hz. Un signal de 1900 Hz, par exemple, va être sensiblement dégradé par un échantillonnage à 4000 Hz.
Si, c'est précisément ce que dit le théorème. On peut obtenir une reproduction parfaite d'un signal de fréquence strictement inférieure à la moitié de la fréquence d'échantillonnage.
En pratique, la raideur des filtres anti-repliement n'étant pas infinie, il faut garder un peu de marge entre la fréquence la plus haute du signal et Fe/2.
Mais pour reprendre ton exemple, une fréquence pure à 1.9kHz, qui ne bave absolument pas au-delà de 2kHz, peut être échantillonnée et parfaitement reproduite avec un échantillonnage à 4kHz.
Citation de trazom :
Un son de 9 Hz (ligne rouge) et ce qu'il devient après numérisation à 20 Hz.
Sauf que ton signal "résultat" contient plein de fréquences supérieures à la moitié de la fréquence d'échantillonnage. Filtre-les, et tu obtiendras une magnifique sinusoïde telle que tu avais mis au départ.
Musikmesser 2013 - Bullshit Gourous - Tocxic Instruments - festivals Foud'Rock, Metal Sphère et la Tour met les Watts
static volatile
1793
AFicionado·a
Membre depuis 7 ans
18 Posté le 11/05/2018 à 23:39:21
Citation de ChatNon :
c'est là que je ne suis pas d'accord. Discrétiser, c'est perdre de l'information, qu'elle que soit la fréquence d’échantillonnage, si le signal d'origine est continu.
Non, et c'est d'ailleurs le sujet de la démonstration de Shannon.
L'image que tu as postée est fausse.
Lorsqu'on reconstruit un signal discret, on relie pas les points entre eux par des segments de droite.
Renseigne-toi sur les bloqueurs d'ordre zéro et la transformée en Z.
Un petit rappel sur l'impulsion de Dirac et la fonction porte ne te ferait pas de mal non plus.
Resistance is not futile... it's voltage divided by current
trazom
1819
AFicionado·a
Membre depuis 20 ans
19 Posté le 11/05/2018 à 23:40:16
Oui, c'est ce que je veux dire quand j'ajoute :
Citation :
Néanmoins, les informations enregistrées doivent permettre (en théorie) de retrouver le signal initial.
ChatNon
186
Posteur·euse AFfiné·e
Membre depuis 6 ans
20 Posté le 11/05/2018 à 23:41:12
Je n'ai pas posté d'image
- < Liste des sujets
- Charte